You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

102 lines
3.4 KiB

##
## mlpack.spec -- OpenPKG RPM Package Specification
## Copyright (c) 2000-2022 OpenPKG Project <http://openpkg.org/>
##
## Permission to use, copy, modify, and distribute this software for
## any purpose with or without fee is hereby granted, provided that
## the above copyright notice and this permission notice appear in all
## copies.
##
## THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED
## WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
## MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
## IN NO EVENT SHALL THE AUTHORS AND COPYRIGHT HOLDERS AND THEIR
## CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
## SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
## LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
## USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
## ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
## OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
## OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
## SUCH DAMAGE.
##
# package information
Name: mlpack
Summary: Machine Learning Library
URL: http://mlpack.org/
Vendor: Ryan Curtin et al.
Packager: OpenPKG Project
Distribution: OpenPKG Community
Class: EVAL
Group: Mathematics
License: BSD
Version: 2.2.5
Release: 20180114
# list of sources
Source0: http://mlpack.org/files/mlpack-%{version}.tar.gz
Patch0: mlpack.patch
# build information
BuildPreReq: OpenPKG, openpkg >= 20160101, cmake, gcc, gcc::with_cxx = yes, pkgconfig, txt2man, bash
PreReq: OpenPKG, openpkg >= 20160101
BuildPreReq: lapack, armadillo, boost
PreReq: lapack, armadillo, boost
%description
mlpack is an intuitive, fast, scalable C++ machine learning library,
meant to be a machine learning analog to LAPACK. It aims to
implement a wide array of machine learning methods and functions as
a "swiss army knife" for machine learning researchers. In addition
to its powerful C++ interface, mlpack also provides command-line
programs and Python bindings.
%track
prog mlpack = {
version = %{version}
url = http://mlpack.org/download.html
regex = mlpack-(__VER__)\.tar\.gz
}
%prep
%setup -q
%patch -p0
%build
mkdir build
( cd build
cmake \
-Wno-dev \
-DCMAKE_BUILD_TYPE="Release" \
-DCMAKE_INSTALL_PREFIX="%{l_prefix}" \
-DCMAKE_C_COMPILER="%{l_cc}" \
-DCMAKE_C_FLAGS="%{l_cflags} %{l_cppflags}" \
-DCMAKE_CXX_COMPILER="%{l_cxx}" \
-DCMAKE_CXX_FLAGS="%{l_cxxflags} %{l_cppflags}" \
-DCMAKE_EXE_LINKER_FLAGS="%{l_ldflags}" \
-DARMA_EXTRA_DEBUG=OFF \
-DDEBUG=OFF \
-DPROFILE=OFF \
-DBUILD_CLI_EXECUTABLES=ON \
-DMATLAB_BINDINGS=OFF \
-DBUILD_TESTS=OFF \
-DBUILD_SHARED_LIBS=OFF \
-DBUILD_WITH_COVERAGE=OFF \
-DMATHJAX=OFF \
-DFORCE_CXX11=ON \
..
%{l_make} %{l_mflags}
) || exit $?
%install
( cd build
%{l_make} %{l_mflags} install DESTDIR=$RPM_BUILD_ROOT
) || exit $?
strip $RPM_BUILD_ROOT%{l_prefix}/bin/* >/dev/null 2>&1 || true
%{l_rpmtool} files -v -ofiles -r$RPM_BUILD_ROOT %{l_files_std}
%files -f files
%clean